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Abstract 

Background: Hyperspectral reflectance data in the visible, near infrared and shortwave infrared range (VIS–NIR–

SWIR, 400–2500 nm) are commonly used to nondestructively measure plant leaf properties. We investigated the 

usefulness of VIS–NIR–SWIR as a high-throughput tool to measure six leaf properties of maize plants including chloro-

phyll content (CHL), leaf water content (LWC), specific leaf area (SLA), nitrogen (N), phosphorus (P), and potassium (K). 

This assessment was performed using the lines of the maize diversity panel. Data were collected from plants grown 

in greenhouse condition, as well as in the field under two nitrogen application regimes. Leaf-level hyperspectral data 

were collected with a VIS–NIR–SWIR spectroradiometer at tasseling. Two multivariate modeling approaches, partial 

least squares regression (PLSR) and support vector regression (SVR), were employed to estimate the leaf properties 

from hyperspectral data. Several common vegetation indices (VIs: GNDVI, RENDVI, and NDWI), which were calculated 

from hyperspectral data, were also assessed to estimate these leaf properties.

Results: Some VIs were able to estimate CHL and N  (R2 > 0.68), but failed to estimate the other four leaf properties. 

Models developed with PLSR and SVR exhibited comparable performance to each other, and provided improved 

accuracy relative to VI models. CHL were estimated most successfully, with  R2 (coefficient of determination) > 0.94 and 

ratio of performance to deviation (RPD) > 4.0. N was also predicted satisfactorily  (R2 > 0.85 and RPD > 2.6). LWC, SLA 

and K were predicted moderately well, with  R2 ranging from 0.54 to 0.70 and RPD from 1.5 to 1.8. The lowest predic-

tion accuracy was for P, with  R2 < 0.5 and RPD < 1.4.

Conclusion: This study showed that VIS–NIR–SWIR reflectance spectroscopy is a promising tool for low-cost, nonde-

structive, and high-throughput analysis of a number of leaf physiological and biochemical properties. Full-spectrum 

based modeling approaches (PLSR and SVR) led to more accurate prediction models compared to VI-based methods. 

We called for the construction of a leaf VIS–NIR–SWIR spectral library that would greatly benefit the plant phenotyp-

ing community for the research of plant leaf traits.
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Background

High-throughput plant phenotyping deals with rapid 

and large-scale collection of plant phenotypic data using 

advanced sensing, robotics and data analytics [1]. The 

ultimate motivation of research in this field is to collect 

plant phenotypes with the efficiency and resolution com-

parable to plant genomic data to facilitate gene discovery 

and targeted crop improvement [2, 3]. In the past few 

years, rapid advancements have been made in measuring 

morphological and structural traits of plants (height, size, 

leaf area, etc.) using imaging and image analysis [4, 5]. 

Time sequences of these nondestructive measurements 

further enable quantification of dynamic traits such as 

growth and stress response [6, 7]. To date, however, fewer 

studies have focused on high-throughput phenotyping of 

chemical compositions of plants. RGB (or visible light) 

cameras do not provide wide enough spectral ranges or 

high enough spectral resolution for chemical imaging, 

whereas hyperspectral imaging is still at its beginning 

stage for whole plant phenotyping, with a number of 

practical challenges yet to overcome [8].

Visible (VIS, 400–700  nm), near infrared (NIR, 

700–1100  nm), and shortwave infrared (SWIR, 1100–

2500 nm) spectroscopy (VIS–NIR–SWIR) is a promising 

technique to measure plant leaf physiological and chemi-

cal properties rapidly and non-destructively [9, 10]. In 

plant leaf cells, photosynthetic pigments such as chloro-

phylls and carotenoids absorb strongly in the VIS region. 

Water in fresh plant leaves interact with VIS–NIR–SWIR 

energy in two ways: strong reflection in NIR (due to the 

multiple reflections of turgid cell structure) and absorp-

tion in SWIR (in particular near 1450 and 1900  nm 

bands) [11]. Dry matter in plant leaves is composed pri-

marily of organic compounds (structural carbohydrates, 

proteins, amino acids, etc.) that cause various spectral 

signals (combinational and overtone vibrational bands) in 

the SWIR region. In principle, these interactions between 

plant leaves and VIS–NIR–SWIR energy make it pos-

sible to measure chemical compositions of plant leaves 

nondestructively.

VIS–NIR–SWIR hyperspectral data has been widely 

used to calculate narrow-band vegetation indices (VIs, 

[12]). A VI is formulated from two or more spectral 

bands in a simple mathematical form. The selection of 

spectral bands is often based on the empirical relation-

ship between given leaf properties and spectral data as 

determined by correlation analysis. Normalized differ-

ence vegetation index (NDVI) is one such index that is 

widely used for leaf chlorophyll and nitrogen analysis 

[13, 14]. The selection of VI bands can also be based on 

certain physiological aspect of plants. For example, Pho-

tochemical Reflectance Index (PRI) is devised to cap-

ture subtle spectral differences between the different 

carotenoid pigments involved in the xanthophyll cycle 

and can be employed as a proxy to estimate a plant’s 

radiation use efficiency [15]. One advantage of VI is that 

they are easy to compute. However, they discard a lot of 

spectral information which could otherwise be useful 

for modeling and prediction. With rapid advancements 

in computational capability in recent years, it is now 

practical to employ more advanced analytical tools to 

model the whole VIS–NIR–SWIR hyperspectral data for 

estimation.

A number of studies have explored the use of VIS–

NIR–SWIR hyperspectral data in the context of plant 

phenotyping. Yendrek et al. [16] investigated the perfor-

mance of VIS–NIR–SWIR to predict a number of pho-

tosynthetic and biochemical traits in maize plants grown 

under varying  CO2 concentrations and varying nitrogen 

treatments. They found leaf chlorophyll and nitrogen 

contents could be best predicted, followed by specific 

leaf area, saturated rate of photosynthesis, maximum rate 

of phosphoenolpyruvate carboxylation, and leaf oxygen 

radical absorbance capacity. Heckmann et al. [17] evalu-

ated the potential of leaf reflectance to measure three leaf 

properties of Brassica and maize plants including initial-

ize slope of the A–Ci curve, maximal assimilation rate of 

 CO2, and CN ratio. Silva-Perez et  al. [18] measured 76 

wheat genotypes grown in greenhouses and fields with a 

VIS–NIR–SWIR instrument and a gas exchange device. 

They reported model prediction  (R2) of 0.62 for maxi-

mum Rubisco activity normalized to 25  °C, 0.7 for elec-

tron transport rate, 0.81 for SPAD, 0.89 for leaf dry mass 

per area, and 0.93 for nitrogen per unit leaf area.

In this paper, we evaluated the usefulness of VIS–NIR–

SWIR hyperspectral data to estimate leaf physiological 

and chemical properties of maize plants from a maize 

diversity panel. The entire panel was grown three times, 

in the field under a nitrogen sufficient (+ N) and nitro-

gen deficient (− N) condition, and then in the green-

house under an optimal condition. The leaf properties 

studied were chlorophyll content, water content, specific 

leaf area, and macronutrient concentrations of nitrogen, 

phosphorus, and potassium.

Materials and methods

Experiment and data collection

We used the maize diversity panel, which consists of 282 

genetically diverse lines [19]. This panel was selected to 

capture as much of the genetic diversity present in maize 

as possible, while consisting of lines that could be reliably 

grown to maturity in temperate North America [19]. This 

panel has also been phenotyped for a wide range of traits 

across many years and environments.

The field experiment was conducted on Havelock 

Research Farm of the University of Nebraska-Lincoln 
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(45°51′49″N, 96°31′09″W). The predominant soil types 

were Zook silty clay loam and Colo silty clay loam. The 

maize diversity panel was grown in two replicates, one 

under low nitrogen condition (− N) and the other nor-

mal condition (+ N). For the + N treatment, 135  kg/

ha urea (dry fertilizer) was applied; whereas for the 

− N treatment, no N fertilizer was added. The planting 

date was May/16/2018. Each replicate consisted of 288 

plots, among which 229 were from the maize diversity 

panel. The remaining plots were hybrid check varieties 

(B73xMo17 and B37xMo17) and expired plant variety 

protection (PVP) lines interspersed randomly. Each plot 

was 1.6 m wide and 6.3 m long, comprising of two rows 

of 38 seeds from each maize line. All other agronomic 

practices followed the recommendations by University of 

Nebraska’s Research Farm support group.

Plant leaf sampling was conducted on July/12 and 

July/13 2018, when roughly 50% of the plots were tas-

seling or had already tasseled. From each maize genotype 

(plot), a representative plant was identified. Leaf 2, 3 and 

4 (leaf 1 was the flag leaf ) from the plant were cut at the 

stem and immediately placed in a Ziploc bag and stored 

in an ice cooler. The leaf samples were then transported 

to the lab and processed and analyzed for leaf chemical 

properties.

VIS–NIR–SWIR reflectance spectra of leaf sam-

ples were measured by a benchtop spectroradiometer 

(FieldSpec4, Malvern Panalytical Ltd., Formerly Ana-

lytical Spectral Devices) with a contact probe. The spec-

tral range of the instrument was 350–2500  nm and the 

spectral sampling interval was 1 nm. Each raw spectrum 

therefore had 2151 data points. The contact probe had a 

light aperture of 10 mm, which was its effective sampling 

area. For each leaf, three spectral measurements were 

taken at the tip, middle and base sections (but avoiding 

the midrib area) to account for in-leaf variability. Meas-

urements were also made consistently from leaf ’s adaxial 

side. The nine VIS–NIR–SWIR scans were then averaged 

to represent the spectral reading from that plant.

Leaf chlorophyll concentration (CHL) was measured 

with a handheld chlorophyll concentration meter (MC-

100, Apogee Instruments, Inc., Logan, UT) using the 

sensor’s build-in calibration for maize. Similar to the 

VIS–NIR–SWIR measurements, chlorophyll concentra-

tion was also measured at three locations per leaf and 

nine readings from each plant were averaged. The unit of 

CHL was μmol/m2.

Leaf area (LA) was measured with a leaf area meter (LI-

3100, LI-COR Biosciences, Lincoln, NE). Fresh weight 

(FW) of the leaves was recorded by a digital balance. Leaf 

samples were placed in a walk-in oven set to 50  °C and 

dried over 72 h to a constant weight. Dry weight (DW) 

of the leaves was then recorded. Leaf Water Content 

(LWC, %) was calculated as (FW–DW)/FW × 100%. Spe-

cific Leaf Area (SLA,  m2/kg) was calculated as LA/DW.

Dried plant samples were sent to a commercial lab 

(Midwest Laboratories, Inc., Omaha, NE) where the 

samples are ground, homogenized, and analyzed for N, 

phosphorus (P), and potassium (K) concentration. N 

was analyzed with Dumas method using a LECO FP428 

nitrogen analyzer (AOAC method 968.06). P and K were 

analyzed with microwave nitric acid digestion followed 

by inductively coupled plasma spectrometry (AOAC 

method 985.01).

A third replicate of the maize diversity panel was grown 

at the University of Nebraska-Lincoln’s Greenhouse 

Innovation Center. Three seeds were sown in 9.08 L pots 

(diameter 24 cm, height 26 cm) and thinned to one plant 

per pot after germination. Temperature in the greenhouse 

was set between 22.7 and 28.3  °C; and relative humid-

ity was approximately 60%. The lighting cycle was set at 

16  h from 0600 to 2200  hours. The pot was filled with 

growth media (Premier Tech Horticulture Promix BX) 

mixed with 0.015  kg of 15-9-12 osmocote (3–4  months 

release), 0.015  kg of 15-9-12 osmocote (5–6  months 

release), 0.037 kg of lime, and 1.3 kg of water. Water was 

added daily to pots with automated watering stations, 

with a target weight of 7.4 kg (including the pot carrier) 

at the beginning and 8.3 kg at the end. The date of plant-

ing was Aug/1/2018 and the leaf samples were taken on 

Oct/9/2018 and Oct/10/2018 (plants were at the flower-

ing stage) following the same protocols as the field sam-

ples described above. The total number of samples from 

the greenhouse was 262, which included 229 lines from 

the maize diversity panel and 33 maize landraces.

In summary, the six leaf physiological and chemical 

properties we were interested in VIS–NIR–SWIR mod-

eling were: leaf chlorophyll concentration (CHL, μmol/

m2 of leaf area), leaf water content (LWC, %), specific leaf 

area (SLA,  m2/kg), nitrogen (N, %), phosphorus (P, %) and 

potassium (K,  %). CHL, LWC, SLA and N were among 

the most important leaf properties frequently studied by 

plant breeders, physiologists, and agronomists. While 

P and K were less studied spectroscopically, both were 

essential nutrients that have significant implications for 

crop production.

Spectral preprocessing and multivariate modeling

Spectral data from 350 to 450  nm exhibited relatively 

high levels of noise, and were removed and excluded 

from downstream spectral analysis. The spectra were 

preprocessed with a Savitzky–Golay smooth filter to 

further reduce noise (window size = 5 and polynomial 

order = 2, [20]. The smoothed spectra were down-sam-

pled to every five nm to reduce the dimensionality of the 

predicator variables for more efficient computation.
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The entire sample set was randomly split into a training 

set (60%) and a test set (40%). The training set was used for 

calibrating prediction models of the six maize leaf proper-

ties using spectral data; and the model performance was 

assessed on the test set. We investigated two multivari-

ate modeling approaches: Partial Least Squares Regres-

sion (PLSR) and Support Vector Regression (SVR). Both 

approaches were widely employed for modeling by using 

all wavebands in VIS–NIR–SWIR hyperspectral data. 

PLSR is a linear modeling technique where the regression 

is conducted between the response variable and the PLS 

Latent Variables (LV). The LVs are linear combinations of 

the original wavebands which achieve (1) accounting for 

the maximum variability in the hyperspectral data, and 

(2) maximally correlated with the response variable (Hel-

land [21]). SVR, on the other hand, is a nonlinear technique 

where an optimal hyperplane is constructed in a higher 

dimensional feature space. A linear regression function is 

then computed in the higher dimensional feature space for 

the original wavebands which are mapped through a ker-

nel function [22, 23]. PLSR and SVR, together with other 

techniques (such as Random Forest and Artificial Neu-

ral Network) are usually referred to as Machine Learning 

approaches [24].

Before modeling, response and predictor variables were 

zero-centered (by their respective means) and scaled to 

unit variance (by their respective standard deviations). Ten-

fold (random segments) cross validation was employed in 

model training to balance model complexity and predictive 

accuracy (i.e., avoid overfitting). In PLSR, models having as 

many as 25 latent variables  (nLV) were considered, and the 

best model was the one that gave the lowest cross-validated 

root mean squared error  (RMSECV). In SVR, a linear kernel 

function was used. The regularization parameter C (cost 

for constraints violation) was tested with five values: 0.01, 

0.1, 1, 10, and 100; and the optimal C was the one that gave 

the lowest  RMSECV in cross validation.

The best models were then applied to the test set. The 

models were evaluated by comparing the lab-measured 

and model-estimated leaf properties using Coefficient of 

Determination  (R2), Root Mean Squared Error of Test-

ing  (RMSET, Eq. 1), Mean Absolute Percent Error of Test-

ing  (MAPET, Eq. 2) and Ratio of Performance to Deviation 

(RPD, Eq. 3). These analyses were performed in R statistical 

environment [25] with the “pls” [26], “prospectr” (Stevens 

and Ramirez-Lopez [27]), and “e1071” [28] packages

(1)RMSE =

√√√√ 1

N
×

N∑
i=1

(
Ŷi − Yi

)2

(2)MAPE =

1

N
×

∑
N

i=1

∣∣∣Ŷi − Yi

∣∣∣
Ȳ

Vegetation indices

Hyperspectral-based, narrow-band VIs are commonly 

used to quantify leaf CHL, N and LWC. To test the use-

fulness of the VIs for predicting the leaf properties in 

our dataset, we computed three common VIs from the 

VIS–NIR–SWIR hyperspectral data. They were Green 

Normalized Difference Vegetation Index (GNDVI, [29], 

Red-edge Normalized Difference Vegetation Index 

(RENDVI, [30], and Normalized Difference Water Index 

(NDWI, [31]. GNDVI and RENDVI were shown useful 

for CHL and N quantification [32, 33], and NDWI useful 

for foliar water content [34].

Similar to the PLSR and SVR analyses, we used the 

training set (60%) to develop calibration models (lin-

ear regression considering a linear and quadratic term) 

between the leaf properties and the VIs, and then 

applied the models on the test set and reported test  R2 

and RPD. In addition, we also conducted an exhaustive 

search of all possible two-band combinations in the form 

(B1 − B2)/(B1 + B2) (note GNDVI, RENDVI and NDWI 

all took this form to compute) and selected the one giv-

ing the highest correlation with the target leaf property to 

test its performance.

Results

Boxplots that compared the six leaf properties from the 

Field− N, Field + N, and Greenhouse groups are given 

in Fig.  1. It can be seen that there were significant dif-

ferences in CHL and N among the three groups (Green-

house being highest and Field− N lowest). This was 

expected because plants were continuously supplied with 

nitrogen throughout their lifecycle in the greenhouse; 

whereas N was limited in the field (in particular for the 

Field− N group). CHL was usually correlated with N and 

accounted for over 50% of N content in plants’ leaf tissue. 

For the other four leaf properties, the differences among 

the groups were smaller. The Field− N group tended to 

exhibit lower values for these four properties as well 

(except for SLA for which Field + N was lowest) although 

the difference was not always statistically significant.

Figure 2 gives the pairwise correlations among the six 

leaf properties. Strong and positive correlations were 

observed for CHL versus N, LWC versus SLA, LWC ver-

sus K, and N versus P; whereas strong and negative cor-

relations were observed for CHL versus SLA. Note these 

correlations were consistent among the three different 

environments (Field− N, Field + N and Greenhouse), 

as well as when all the environments were considered 

together. On the other hand, other pairwise correlations 

(3)RPD =
SD

RMSE
.
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were varying and inconsistent. For instance, significant 

negative correlation were observed between CHL and 

LWC for Field + N and Greenhouse. But when all data 

points were pooled together, there was not significant 

correlation between the two variables. This correlation 

structure among the six leaf properties revealed the com-

plex interaction between genotypes and environments.

Figure  3a shows the VIS–NIR–SWIR hyperspectral 

reflectance (after preprocessing) of maize leaves from 

the three groups. The reflectance spectra exhibited sev-

eral typical features of fresh plant leaves [11, 35]: (1) low 

reflectance at blue and red bands due to strong absorp-

tion by the photosynthetic pigments, (2) the red edge, 

and (3) a series of local reflectance minima due to water 

absorption (at 970, 1240, 1450 and 1900  nm). The larg-

est difference among the groups was in the VIS region 

(450–700  nm), where the Field− N group showed high-

est reflectance, followed by the Field + N group and then 

the Greenhouse group. This difference agreed with the 

significant difference in CHL among the three groups 

(Fig. 1). The difference of the mean spectra in the NIR–

SWIR region, however, was quite subtle. We further 

conducted principal component (PC) analysis of hyper-

spectral reflectance data. The first PC score (accounted 

for 62.1% of the total variance in the hyperspectral data) 

versus second PC score (23.4%) is plotted in Fig. 3b along 

with the convex hull of each group. The spread within 

each convex hull could be regarded as the spectral vari-

ation caused by maize genotypes, whereas the distance 

between convex hulls could be regarded as the spectral 

variation attributable to the environments (i.e., Field− N, 

Field + N, and greenhouse). The partial overlaps among 

the three groups suggested that both genotype and envi-

ronment contributed to the total variation in leaf VIS–

NIR–SWIR hyperspectral data, and their contributions 

were confounded and likely not easily separable.

Table  1 summarizes the calibration and test results 

of estimating the six maize leaf properties from the 

Fig. 1 Boxplots comparing the leaf properties of maize plants from Field− N, Field + N, and greenhouse groups. The groups assigned to different 

letters indicated their means were different by Tukey’s Honest Significant Difference test (p value < 0.05)
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VIS–NIR–SWIR hyperspectral reflectance data using 

PLSR. CHL was estimated by VIS–NIR–SWIR most 

successfully, with test  R2 of 0.94 and model RPD of 

4.12. N and LWC were also estimated quite satisfacto-

rily, with test  R2 of 0.86 and 0.70 and model RPD of 2.64 

and 1.83, respectively. K and SLA were the next tier 

with moderate success. Their test  R2 was greater than 

0.5 and model RPD was close to 1.50. Finally, P was 

predicted with least success among the six leaf proper-

ties, with test  R2 of 0.43 and model RPD of 1.33. Fig-

ure 4 shows the prediction scatterplots of the test set by 

the PLSR method, to provide visual indication of how 

good these predictions were. 

Fig. 2 The matrix of scatterplots and Pearson’s correlation coefficients among the six maize leaf properties. The orange dots are plants in Field− N; 

blue dots are in Field + N; and black dots are in greenhouse. The correlation coefficients in the top row were calculated using the plants in Field− N, 

second row Field + N, third row greenhouse, fourth row by pooling the three groups together. Significance level: *** at 0.001 level, ** at 0.01 level, * 

at 0.05 level, ns not significant
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The results of SVR modeling was similar to those of 

PLSR modeling (Table  2). Specifically, CHL was pre-

dicted best. N and LWC were predicted satisfactorily, fol-

lowed by the moderate model performance with K and 

SLA. P still showed poor performance.

For all leaf properties, models performed only slightly 

better  (R2 and RMSE) on the calibration set than the test 

set (Tables 1, 2). This suggested that the models were not 

overfitted to the training set, and they could be used with 

confidence to the new samples that are similar to the 

samples in this study.

In the study of field grown maize plants under 

N ample or limiting conditions, Yendrek et  al. [16] 

achieved  R2 of 0.85, 0.96, and 0.68 for CHL, N, and 

SLA prediction using VIS–NIR–SWIR hyperspec-

tral data. In the study of wheat, Silva-Perez et  al. [18] 

obtained validation  R2 of 0.89 for leaf dry mass per 

area (a variable defined the same as SLA), 0.70 for N, 

and 0.65 for P. The results of these studies in general 

agreed with our results, showing very good to moder-

ate prediction performance for leaf CHL, N, SLA, and 

P using VIS–NIR–SWIR hyperspectral data. Note that 

we did not find previous results on K and LWC predic-

tion using VIS–NIR–SWIR with PLSR in the context of 

plant phenotyping.

RPD (Eq.  3) was a normalized index by considering 

the intrinsic variation of the dataset (standard devia-

tion) and a model’s predictive accuracy (RMSE). It was 

often used to compare the models across different vari-

ables and studies. Following a few guidelines in the lit-

erature [36, 37], we proposed the following four RPD 

ranges to evaluate the performance of VIS–NIR–SWIR 

models for the phenotyping of plant leaf properties.

Fig. 3 a The mean VIS–NIR–SWIR leaf spectra of the maize plants from Field− N (solid orange), Field + N (solid blue), and greenhouse (solid black). 

The bounding envelopes are the maximum and minimum spectra showing the spectral variability within each group. b Principal component score 

plots (PC1 vs. PC2) of each group and their convex hulls

Table 1 Calibration and test results of estimating leaf physiological and chemical properties of maize plants from VIS–

NIR–SWIR hyperspectral reflectance spectra using Partial Least Squares Regression

Leaf properties Calibration Test

R2 RMSEC nLV R2 RMSET MAPET (%) RPD

Chlorophyll (μmol/m2) 0.948 27.4 15 0.942 29.8 5.86 4.12

Leaf water content (%) 0.757 1.44 14 0.701 1.59 1.52 1.83

Specific leaf area  (m2/kg) 0.578 1.55 12 0.554 1.61 6.80 1.50

Nitrogen (%) 0.869 0.252 18 0.855 0.282 8.82 2.63

Phosphorus (%) 0.453 0.084 18 0.435 0.084 16.8 1.33

Potassium (%) 0.705 0.272 25 0.586 0.301 9.76 1.54
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1. RPD > 3.5, Excellent. These models can be used for 
quantitative prediction with high confidence. If suf-
ficiently tested, these models can potentially replace 
tedious lab-based analysis. Our CHL model fell into 
this category.

2. 2.5 < RPD < 3.5, Very Good. These models may also 
be used for quantitative analysis, but not with the 
level of confidence in the first category (certainly not 

replace lab-based analysis). Our N model was in this 
category.

3. 1.5 < RPD < 2.5, Good. These models are not for quan-
titative prediction, but can be used for qualitative 
screening (e.g., differentiate highs and lows from a 
large sample set, which are common for plant pheno-
typing and breeding). Our LWC, SLA and K models 
were in this category.

Fig. 4 Lab-measured versus VIS–NIR–SWIR predicted maize leaf properties for the 40% test set. The orange squares are plants from Field− N; blue 

squares are plants from Field + N; black squares are plants from greenhouse. The black dashed line is 1:1 line. Statistics for the predictions can be 

found in Table 1
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4. RPD < 1.5, Fair. These models may not be useful and 
should be further investigated and improved. Our P 
model was in the category.

Leaf properties like CHL and N could be estimated 

quite satisfactorily with GNDVI and RENDVI (Table 3, 

test  R2 ranging from 0.68 to 0.85); whereas the esti-

mation of LWC, SLA, P and K with these two VIs 

were poor (test  R2 equal or lower than 0.1). This was 

in agreement with the literature where GNDVI and 

RENDVI were demonstrated to quantify plant CHL and 

N at both leaf and canopy scales; but their use for the 

other four leaf properties was not reported. Surpris-

ingly, LWC could not be estimated successfully with 

any VIs, including NDWI. One possible reason was 

that the spread of LWC in our dataset was not large 

enough to build a robust model for NDWI. VIs com-

puted from the best two band combination performed 

better for all leaf properties than GNDVI, RENDVI and 

NDWI. Slight improvement was achieved for CHL and 

N. LWC and SLA showed the largest improvement (test 

 R2 of 0.43 and 0.31). The selected bands appeared in the 

longer wave SWIR region, indicating the usefulness of 

this spectral region in estimating LWC and SLA. Esti-

mation of P and K was also slightly better for the best 

two band combination  (R2 around 0.14), but still quite 

poor.

Discussion

Hyperspectral vegetation indices versus whole-spectrum 

based modeling (PLSR and SVR)

There was a clear advantage of using the whole-spectrum 

based approaches (PLSR and SVR) over VIs to predict 

leaf properties (Tables 1, 2 vs. Table 3). For CHL and N 

which VIs could predict satisfactorily, their models devel-

oped by PLSR and SVR performed even better. For the 

other four leaf properties which VIs predicted only fairly 

or poorly, PLSR and SVR still yielded moderately satis-

factory predictions. As stated before, the advantage of 

hyperspectral, narrow-band VIs is computational sim-

plicity. However, by selecting only a few (usually two) 

bands from hundreds or thousands of hyperspectral 

bands, a lot of useful information is discarded. The plant 

leaf is a complex mixture of many chemical compounds 

(such as water, pigments, N-containing proteins, struc-

tural carbohydrates, etc.), and they all contribute to the 

overall shape of leaf spectra. This is particular true when 

a diverse set of plants (like ours from a maize diversity 

panel) is studied. In addition, the physical state of the leaf 

(such as leaf thickness and surface roughness) also affect 

Table 2 Calibration and test results of estimating leaf physiological and chemical properties of maize plants from VIS–

NIR–SWIR hyperspectral reflectance spectra using support vector regression

Calibration Test

R2 RMSEC C R2 RMSET MAPET (%) RPD

Chlorophyll (μmol/m2) 0.950 27.0 1 0.946 28.5 5.59 4.30

Leaf water content (%) 0.765 1.42 1 0.703 1.81 1.58 1.83

Specific leaf area  (m2/kg) 0.600 1.52 1 0.562 1.61 6.71 1.50

Nitrogen (%) 0.882 0.240 10 0.861 0.277 8.69 2.67

Phosphorus (%) 0.545 0.077 100 0.481 0.081 16.4 1.38

Potassium (%) 0.740 0.256 100 0.543 0.317 10.2 1.46

Table 3 Test results of  using the  selected vegetation indices (GNDVI, RENDVI, NDWI, and  the  best two band 

combinations) computed from VIS–NIR–SWIR hyperspectral data to predict the six maize leaf properties

Leaf properties GNDVI (550 
and 800 nm)

RENDVI (705 
and 750 nm)

NDWI (860 
and 1240 nm)

Best two band combination

R2 RPD R2 RPD R2 RPD R2 RPD Selected bands

Chlorophyll (μmol/m2) 0.847 2.56 0.805 2.27 0.063 1.03 0.921 3.54 730, 770 nm

Leaf water content (%) 0.045 1.02 0.045 1.02 0.094 1.05 0.428 1.32 1465, 2125 nm

Specific leaf area  (m2/kg) 0.057 1.03 0.050 1.03 0.058 1.03 0.314 1.21 1870, 2275 nm

Nitrogen (%) 0.717 1.88 0.685 1.78 0.139 1.07 0.751 2.00 735, 745 nm

Phosphorus (%) 0.101 1.05 0.083 1.04 0.013 1.01 0.147 1.08 850, 860 nm

Potassium (%) 0.006 0.99 0.002 0.98 0.087 1.03 0.143 1.05 1215, 1325 nm
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it reflectance spectra. Using PLSR and SVR that employ 

the entire spectra makes the models more flexible in 

accentuating the spectral features that are correlated with 

the target property while suppressing the bands whose 

variation is sensitive to other confounding factors. With 

the rapid advancement of computing, PLSR and SVR 

modeling can be done very efficiently. Moreover, other 

machine learning approaches such as Random Forest, 

Artificial Neural Network, and Ridge/Lasso regression 

can also be considered, giving researches a wide range of 

choices for their data. Some of these approaches might 

work particularly well under certain conditions. We 

therefore suggested that whole-spectrum based modeling 

should be used for the phenotyping of plant leaf physi-

ological and biochemical traits using VIS–NIR–SWIR, as 

we virtually have no computational barriers that earlier 

researchers were facing.

Advantages of VIS–NIR–SWIR hyperspectral data for plant 

phenotyping

Compared to high-throughput phenotyping of plant 

morphological traits using imaging techniques, pheno-

typing of plant leaf physiological and chemical traits lags 

behind. Destructive leaf tissue sampling followed by lab-

based analyses remain as the mainstream method. VIS–

NIR–SWIR has several advantages that make it powerful 

for phenotyping physiological and biochemical traits at 

the leaf level.

Firstly, it is rapid, nondestructive, and takes only a few 

seconds to acquire a scan. Rapidity enables fast screening 

of hundreds of plants or genetic lines, which is essential 

for high-throughput phenotyping. Non-destructiveness, 

on the other hand, allows repeated measurements of 

the same leaves and plants along their life cycle. These 

measurements would potentially lead to the quantifica-

tion of more complex and dynamic traits such as nutrient 

uptake and translocation at different growth stages and 

in response to environmental stresses.

Secondly, from one scan multiple leaf properties can 

be simultaneously modeled and estimated (given the 

models for the target properties are already built). This 

multi-sensing capability of VIS–NIR–SWIR is desirable 

for high throughput phenotyping. It further improves 

measurement speed and reduces cost (where multiple 

traits can be obtained from a single scan). Field-deploya-

ble VIS–NIR–SWIR instruments are commercially avail-

able. These commercial instruments are equipped with 

suitable accessories (such as a leaf clip) to facilitate the 

collection of high-quality hyperspectral data in the field. 

This eliminates the need to collect, handle and preserve 

physical leaf samples (during which the plant leaf could 

change its properties), as well as conducting subsampling 

for lab analysis of different traits, and potentially leads to 

more accurate measurements.

Building VIS–NIR–SWIR spectral libraries to support 

high-throughput plant phenotyping research

It is important to note that VIS–NIR–SWIR does not 

measure leaf physiological or chemical properties 

directly. Rather, it is a data-driven approach where mul-

tivariate models (such as PLSR and SVR models) are 

developed to make the estimation. Model calibration, 

which requires a set of samples to be measured with 

the reference methods, is the most expensive part of 

VIS–NIR–SWIR. In research settings, researchers often 

measure more than 50% of their samples for model cali-

bration. However, for the VIS–NIR–SWIR technique to 

be adopted at the commercial scale, it is neither practi-

cal nor economical to develop a calibration set for each 

individual project. Here we propose the development of 

plant leaf VIS–NIR–SWIR spectral libraries in the plant 

phenotyping community. These libraries will include 

both hyperspectral data and lab data, as well as pre-

trained spectroscopic models. In this fashion, individual 

scientists or breeders do not need to develop a model 

calibration set. Rather, they can use the spectral libraries 

(and pre-trained models) to make predictions for their 

samples, therefore improve the cost-effectiveness and 

throughput of their analyses.

Developing such plant leaf VIS–NIR–SWIR spectral 

libraries is not trivial and requires thorough planning 

and long-term collaboration from multiple research 

labs and entities. Some major factors to be considered 

are the plant species (maize, wheat, sorghum, etc.), leaf 

properties to be predicted (chlorophyll content, N, pho-

tosynthetic parameters, etc.), and modeling approaches 

employed. A model optimized for predicting leaf N con-

tent of maize plants might not work well for wheat or 

sorghum. Even within maize, models generated from one 

panel of plants under certain experimental condition may 

not work well for another experimental condition. Main-

taining good records of metadata and practicing QA/QC 

for each dataset to be included into the VIS–NIR–SWIR 

spectral library are critical, such that users can evaluate 

the quality and applicability of the models. The library 

should be searchable, so that users can search for the 

most appropriate samples in the library to form the cali-

bration set of their own and train the models on the fly.

Imagine that a plant breeder is carrying a portable 

VIS–NIR–SWIR instrument to measure hyperspectral 

leaf reflectance of plants in the field. The instrument was 

connected to a spectral library which enables the breeder 

to make real-time estimation of an array of leaf proper-

ties. The researcher will be able to measure hundreds of 

plots quickly, with virtually no additional cost or effort. 
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When returning to office, he/she will readily use these 

real-time predicted leaf properties for more sophisticated 

analysis such as heritability analysis, QTL mapping or 

genomic prediction. We believe that if such a VIS–NIR–

SWIR spectral library is developed, it will contribute to 

high throughput plant phenotyping and accelerate the 

targeted crop improvement (particularly for leaf physi-

ological and chemical traits) in very substantial ways.

Conclusion

In this study, we investigated the usefulness of VIS–NIR–

SWIR leaf reflectance to estimate six leaf physiological 

and biochemical properties of maize plants. We showed 

that leaf chlorophyll content and nitrogen content were 

estimated accurately. Leaf water content, specific leaf 

area, and potassium content were estimated with mod-

erate accuracy; and phosphorus was estimated with low 

accuracy. We also showed that Partial Least Squares 

Regression and Support Vector Regression gave higher 

prediction accuracy than Vegetation Indices. It is con-

cluded that VIS–NIR–SWIR leaf reflectance can be a 

powerful tool for low-cost, nondestructive and high-

throughput analysis of leaf physiological and biochemi-

cal traits. Development of a VIS–NIR–SWIR leaf spectral 

library would great benefit the plant phenotyping com-

munity for the research of leaf traits.
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